

Thermoplastic Strainer Product Guide

Why Thermoplastic Strainers?

For more than 60 years, Hayward Flow Control's leading thermoplastic fluid handling products and solutions have proven to excel in the harshest environments. Thousands of customers worldwide have installed our products into aggressive and corrosive systems, as well as delicate life support systems where the strictest chemical balance is required. We understand the rigorous demands of industrial piping and are committed to offering advantageous products for your application that will keep your systems working.

Hayward's industry leading Basket and Y-Strainers are designed to protect pipeline system components from dirt and debris while allowing process media to flow freely. Simplex and duplex Basket Strainers are manufactured in PVC, CPVC, GFPP and clear Eastar®, and are available with thermoplastic, stainless steel or specialty alloy baskets in a variety of perfs and meshes. Y-Strainers are offered in PVC, clear PVC, CPVC and PVDF materials with FPM or EPDM o-ring seals and a range of perforated thermoplastic or metal screens.

Pipeline Strainers are the unsung heroes in a piping system. Their role in a piping system is simply protecting your investment by removing any potentially harmful solids from the process fluid that can damage inline sensors, pump impellers, valves, and other expensive equipment. Haward Flow Control Thermoplastic Strainers come in three families of products:

Y-strainers function in a variety of liquid straining applications to protect downstream process system components from damage or clogging by sand, gravel, or other debris. Y-strainers remove unwanted solids from piping systems by means of a perforated or mesh screen. Y-strainers are cost effective when removing a small amount of material resulting in long intervals between screen cleanings. To clean the strainer screen, shut down the line and remove the strainer cap. For applications with heavier dirt loading, Y-strainers fitted with a "blow off" connection permits cleaning of the screen without removing it from the strainer body. Hayward Y-Strainers are offered in both "molded-in" and True-Union designs.

Simplex basket strainers are used when liquids require regular or frequent cleaning, and when the line can be shut down for short periods to clean or change the basket. Basket strainers hold substantially more material than Y strainers and offer a lower pressure drop. Installed upright, in a horizontal line, the basket strainer lifts out from the top. This makes it easier to use with high loads, high viscosity fluids, or with large pipeline sizes where the filled basket weight can be considerable. They are indispensable for prefiltration systems.

Duplex basket strainers operate continuously so the pipeline flow never has to be shut down for strainer basket cleaning. When one basket is full, the flow shifts to the other one, making it easy to remove, clean, and replace the first basket. Duplex or "double basket" strainers are valuable in locations in which it is impossible to shut off flow to stop the operation. Examples of these processes include cleaning water intake for Water Treatment plants, prefiltration for membrane systems, screening water in cooling towers, and straining fluids in continuously running chemical operations.

KEY APPLICATIONS FOR HAYWARD THERMOPLASTIC STRAINERS INCLUDE AND NOT LIMITED TO:

Water Treatment Pump Seal Protection
Chilled Water Plating & Surface Finishing

Chemical Processing Sea Water

Scrubbers Plant Intake Water

Semicon Well Water
Parts Washing Pre-Filtration
Mining Remediation
Food Processing Marine

Hayward Flow Control products carry an industry-leading, full three-year warranty. As an ISO 9001:2015 certified company, we strive for the highest quality product possible for use in a wide range of demanding applications.

*ABS applies to CPVC Items Only

YS Series Y-Strainers

1/2" - 2" PVC, CLEAR PVC AND CPVC 2-1/2" - 4" PVC AND CPVC

KEY FEATURES

- Available in PVC, CPVC and Clear PVC Materials
- Horizontal or Vertical Installation
- FPM O-Ring Seals
- 2:1 Open Area Ratio
- Hex Cap for Easy Access to Screen
- Standard Screen has 1/32" Perforation

OPTIONS

 Stainless Steel Perforated or Mesh Strainer Screens Available in Various Sizes and Alloy Materials

MATERIALS

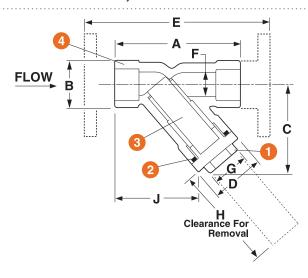
- PVC Cell Class 12454 per ASTM D1784
- Clear PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

EXPLODED VIEW

SIZE	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING
1/2" – 1" (DN15 – DN25)	PVC, CPVC or Clear PVC			
1-1/4" (DN32)	PVC and Clear PVC	Socket or Threaded		
1–1/2" (DN40) 2" (DN50)	PVC, CPVC or Clear PVC		FPM and EPDM	150 PSI @ 70°F 10 Bar @ 21°C Non-Shock
2–1/2" (DN65)	PVC	Socket, Threaded or Flanged		
3–4" (DN80-DN100)	PVC and CPVC			

^{*} PVC and CPVC available with threaded ends to BS21.


YS Series Y-Strainers

1/2" - 2" PVC, CLEAR PVC AND CPVC 2-1/2" - 4" PVC AND CPVC

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Cap
- 2. O-Ring Seal
- 3. Screen
- 4. Body

SCREEN OPTIO	SCREEN OPTIONS								
PERFORATION SIZES	MESH SIZES	SCREEN MATERIAL							
1/32"	20								
1/16"	40								
1/8"	60								
5/32"	80	SSTL, Hastelloy, Monel and Titanium							
3/16"	100								
1/4"	200								
3/8"									
1/32"									
1/16"	N/A	DVC CDVC							
1/8"	IV/A	PVC, CPVC							
3/16"									

DIMENSIONS										WEIG lbs /	
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	G in / mm	H in / mm	J in / mm	SOC / THD	FLANGED
1/2 / 15	3.38/86	1.38/35	2.25/57	1.50/38	N/A	.56/14	1.00/25	2.13/54	2.50/64	.25/.11	N/A
3/4 / 20	4.18/106	1.69/43	2.88/73	2.00/51	N/A	.81 / 21	1.25 / 32	2.75/70	3.00/76	.63/.29	N/A
1 / 25	5.19/132	2.00/51	3.63/92	2.16/55	N/A	1.00/25	1.50/38	3.30/84	3.32/84	.88/.40	N/A
1-1/4 / 32	6.63/168	2.63/67	4.50/114	2.94/75	N/A	1.25/32	2.00/51	4.50/114	4.45/113	1.75/.79	N/A
1-1/2 / 40	6.63/168	2.63/67	4.50/114	2.94/75	N/A	1.56/40	2.00/51	4.50/114	4.45/113	1.63/.74	N/A
2/50	7.63/194	3.38/86	5.38/137	3.75/95	11.00/279	2.00/51	2.38/60	5.06/129	4.88/124	3.00/1.36	5.00/2.27
2-1/2 / 65	10.31 / 262	4.69/119	7.25/184	5.25/133	N/A	2.90/74	3.50/89	6.60/168	6.54/166	7.75/3.52	N/A
3/80	10.31 / 262	4.69/119	7.25/184	5.50/140	14.37/365	2.90/74	3.50/89	6.60/168	6.54/166	7.50/3.40	12.25/5.56
4 / 100	12.81 / 325	5.75 / 146	8.88 / 226	6.18 /157	17.73 / 450	3.78 / 96	4.25 / 108	8.00 / 203	8.58 / 218	9.50/4.30	17.50/7.94

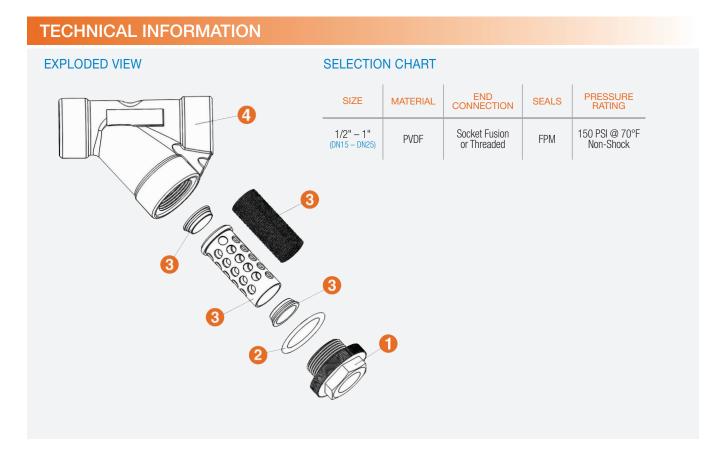
 $\label{lem:decomposition} \mbox{Dimensions are subject to change without notice} - \mbox{consult factory for installation information}$

Cv VALUES*

OPERATING TEMPERATURE/PRESSURE

SIZE in / DN	Cv VALUES	SIZE in / DN	Cv VALUES	PRESSURE LOSS CALCULATION FORMULA		25	35 4	15 55		MPERA 75	TURE 85	(°C) 95	105	115	125	1100
1/2 / 15	4.0	2 / 50	28	$\Delta P = \left[\frac{Q}{Cv}\right]^2$	140											1000 900
3/4 / 20	6.8	2-1/2 / 65	40	$\Delta P = \text{Pressure Drop}$	120 (IS 100											900 9
1 / 25	9.0	3 / 80	65	Q = Flow in GPM												
1-1/4 / 32	12	4 / 100	100	Cv = Flow Coefficient	PRESSURE 08 08				Λ							600 BANGS 500 BA
1-1/2 / 40	28				40							CPI	/C			400 □ 300
* With 1 / 32" pla	istic screen				20			PVC a								200
of Hay	ard is a registered trademan ward Industries, Inc. 19 Hayward Industries, Inc.				0 60	80	100	120	140 TEN	160 IPERA	180	200 (°F)	220	240	260	0

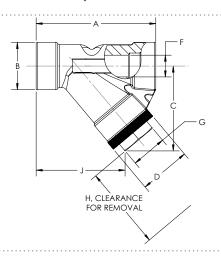
YS Series Y-Strainers


1/2", 3/4" AND 1" PVDF

KEY FEATURES

- PVDF 1-pc Molded Body
- NPT or BSP Threaded Ends
- Socket Fusion Ends for IPS Schedule 40 / 80, or for SDR21 / 33 Piping
- Horizontal or Vertical Installation
- FPM O-Ring Seals
- Hex Cap for Easy Access to Screen
- Standard Screen has 3/32" Perforation

MATERIALS


- Natural PVDF per ASTM D3222 Type 1
- FPM O-Ring Seals

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Cap
- 2. O-Ring Seal
- 3. Cartridge
- 4. Body

SCREEN OPTIONS

PERFORATION SIZES	BASKET MATERIAL			
1/16″	PTFF / PVDF			
3/32"	PTFE / PVDF			

DIMENSIONS

DIMENSIONS									
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	F in / mm	G in / mm	H in / mm	J in / mm	SOC / THD
1/2 / 15	3.30/84	1.50/38	2.30/58	1.40/36	0.50/13	1.00/25	2.20/56	2.80/71	0.33/0.15
3/4 / 20	4.1/104	1.90/48	3.00/76	1.90/49	0.75/19	1.25/32	2.70/69	3.20/81	0.82 / 0.37
1/25	5.0/127	2.00/51	3.60/91	2.10/53	1.00/25	1.50/38	3.50/89	3.90/99	1.14/0.52

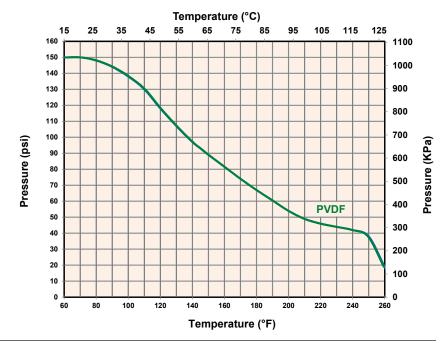
Dimensions are subject to change without notice — consult factory for installation information

Cv VALUES*

SIZE in / DN	Cv VALUES
1/2 / 15	4.0
3/4 / 20	6.8
1 / 25	9.0

* With standard 3/32" perforation.

PRESSURE LOSS **CALCULATION FORMULA**


$$\Delta P = \left[\frac{Q}{Cv}\right]^2$$

 $\Delta P = Pressure Drop$

Q = Flow in GPM

Cv = Flow Coefficient

OPERATING TEMPERATURE/PRESSURE

Hayward is a registered trademark of Hayward Industries, Inc.
© 2019 Hayward Industries, Inc.

YS Series True Union Y-Strainers

1/2" - 2" PVC, CLEAR PVC AND CPVC 2-1/2" - 4" PVC AND CPVC

KEY FEATURES

- True Union Connection for Ease of Installation
- Available in PVC. CPVC and Clear PVC Materials
- Horizontal or Vertical Installation
- FPM O-Ring Seals
- 2:1 Open Area Ratio
- Hex Cap for Easy Access to Screen
- Standard Screen has 1/32" Perforation

OPTIONS

• Stainless Steel Perforated or Mesh Strainer Screens Available in Various Sizes and Alloys

MATERIALS

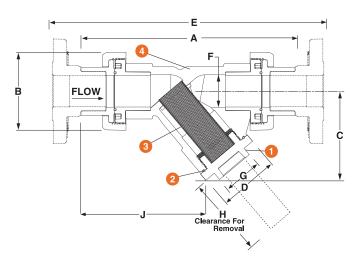
- PVC Cell Class 12454 per ASTM D1784
- Clear PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

EXPLODED VIEW

	SIZE	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING		
	1/2" - 1" (DN15 - DN25)	PVC, CPVC or Clear PVC					
Ī	1-1/4" (DN32)	PVC and Clear PVC			150 PSI @ 70°F 10 Bar @ 21°C Non-Shock		
•	1-1/2" (DN40) 2" (DN50)	PVC, CPVC or Clear PVC	Socket, Threaded or Flanged	FPM and EPDM			
•	2-1/2" (DN65)	PVC					
•	3-4" (DN80-DN100)	PVC and CPVC					
	+ 01/0 1 001/0						

^{*} PVC and CPVC socket ends available to ISO 727-1 and threaded ends to BS21. Flanged ends available in DIN / EN PN10.

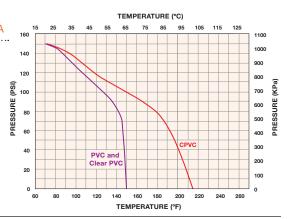

YS Series True Union Y-Strainers

1/2" - 2" PVC, CLEAR PVC AND CPVC 2-1/2" - 4" PVC AND CPVC

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Cap
- 2. O-Ring Seal
- 3. Screen
- 4. Body
- 5. Union Nuts
- 6. End Connectors


SCREEN OPTIONS								
PERFORATION SIZES	MESH SIZES	SCREEN MATERIAL						
1/32"	20							
1/16"	40							
1/8"	60							
5/32"	80	SSTL, Hastelloy, Monel and Titanium						
3/16"	100							
1/4"	200							
3/8"	325							
1/32"								
1/16"	N/A	DVC CDVC						
1/8"	N/A	PVC, CPVC						
3/16"								

DIMENSIONS										WEIGHT lbs / kg	
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	G in / mm	H in / mm	J in / mm	SOC/ THD	FLANGED
1/2 / 15	6.64/167	2.25/57	2.25/57	1.50/38	N/A	.56/14	1.00/25	2.13/54	4.13/105	.61 / .28	N/A
3/4 / 20	7.42/188	2.63/67	2.88/73	2.00/51	N/A	.81 / 21	1.25/32	2.75/70	4.62/118	1.17/.53	N/A
1 / 25	8.97/228	3.00/76	3.63/92	2.16/55	11.65/296	1.00/25	1.50/38	3.30/84	5.21 / 133	1.6/.73	2.3/1.1
1-1/4 / 32	13.01/330	4.75/121	4.50/114	2.94/75	N/A	1.25/32	2.00/51	4.50/114	7.64/195	4.5/2.0	N/A
1-1/2 / 40	12.07/307	4.75/121	4.50/114	2.94/75	15.25/387	1.56/40	2.00/51	4.50/114	7.17/183	3.7/1.7	4.5 / 2.1
2 / 50	13.05/331	4.75/121	5.38/137	3.75/95	16.56 / 421	2.00/51	2.38/60	5.06/129	7.59/193	5.3/2.4	7.5/3.4
2-1/2 / 65	16.77 / 426	6.40/163	7.25/184	5.25/133	N/A	2.90/74	3.50/89	6.60/168	9.77/249	13.1/5.9	N/A
3 / 80	16.77 / 426	6.40/163	7.25/184	5.50/140	21.25 / 540	2.90/74	3.50/89	6.60/168	9.77/249	13.2/6.0	16.4/7.4
4 / 100	21.23/539	8.56 / 217	8.88 / 226	6.18 / 157	26.18 / 665	3.78 / 96	4.25 / 108	8.00 / 203	12.79 / 325	17.7/8.0	23.3/10.6

Cv VALUES*

PRESSURE LOSS CALCULATION FORMULA	Cv VALUES	SIZE in/DN	Cv VALUES	SIZE in/DN
$\Delta P = \left[\frac{Q}{Cv}\right]^2$	28	2 / 50	4.0	1/2 / 15
$\Delta P = \text{Pressure Drop}$	40	2-1/2 / 65	6.8	3/4 / 20
Q = Flow in GPM	65	3 / 80	9.0	1 / 25
Cv = Flow Coefficient	100	4 / 100	12	1-1/4 / 32
			28	1-1/2 / 40

OPERATING TEMPERATURE/PRESSURE

^{*} With 1/32" plastic screen

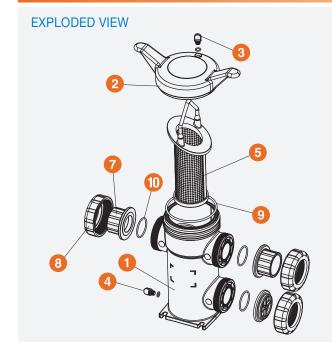
HAYWARD®

SB Series Simplex Basket Strainers

1/2" TO 4" PVC AND CPVC

KEY FEATURES

- Available in PVC and CPVC Materials
- True Union Design
- Ergonomic Hand-Removable Cover
- In-Line or Loop Connections
- External Cover Threads
- Integral Flat Mounting Bases
- PVC or CPVC Baskets Standard
- NSF / ANSI 61 and NSF / ANSI 372 Listed


OPTIONS

- Drain Kit with Lockout Ball Valve
- Baskets Available with Perforated or Mesh Liners
- Stainless Steel, Monel®, Hastelloy® and Titanium Strainer Baskets
- Pressure Differential Gauge and Switch

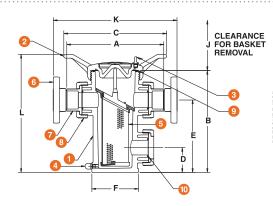
MATERIALS

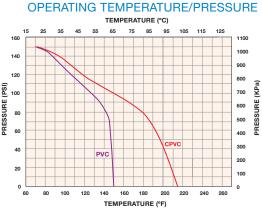
- PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE*	MATERIAL	MATERIAL CONNECTION		PRESSURE RATING		
1/2" - 4" (DN15 - DN100)	PVC or CPVC	Socket, Threaded or Flanged	FPM or EPDM	150 PSI @ 70°F 10 Bar @ 21°C Non-Shock		

- * End connections and assembly nuts are PVC.
- ** PVC and CPVC socket ends available to ISO 727-1 and threaded ends to BS21 Flanged ends available in DIN / EN PN10.
- *** See Page 21 for Available Perf or Mesh


SB Series Simplex Basket Strainers


1/2" TO 4" PVC AND CPVC

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Body
- 2. Cover
- 3. Vent Plug and O-Ring
- 4. Drain Plug and O-Ring
- 5. Basket
- 6. Flange (Optional)
- 7. End Connector
- 8. Nut
- 9. Cover 0-Ring
- 10. End Connector O-Ring

Consult factory for Eastar Temperature & Pressure ratings

DIMENSIONS									WEIGHT lbs / kg			
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	J in / mm	K in / mm	L in / mm	SOC / THD	· ·	VOLUME gal / LT
1/2 / 15	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	10.77 / 274	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
3/4 / 20	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.02 / 280	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1 / 25	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.64 / 296	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1-1/4 / 32	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.63 / 397	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
1-1/2 / 40	12.69 / 322	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.89 / 403	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2/50	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	16.29 / 413	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2-1/2 / 65	16.52 / 420	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	21.02 / 534	22.30 / 566	28.00 / 12.70	33.00 / 14.97	2.80 / 10.60
3/80	16.40 / 417	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	20.36 / 517	22.30 / 566	28.00 / 12.70	33.50 / 15.20	2.80 / 10.60
4 / 100	17.27 / 439	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	22.13 / 562	22.30 / 566	28.00 / 12.70	37.00 / 16.78	2.80 / 10.60

Dimensions are subject to change without notice — consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS

For 1/2" to 4" Strainers										
Plas	stic	Stainless Steel								
1/32"	1.05	1/32"	.82	20 Mesh	.79					
1/16"	1.00	1/16"	.74	40 Mesh	1.01					
1/8"	.58	1/8"	.58	60 Mesh	1.20					
3/16"	.46	5/32"	.37	80 Mesh	1.16					
		3/16"	.46	100 Mesh	1.20					
		1/4"	.58	200 Mesh	1.09					
		3/8"	.45							

PRESSURE LOSS CALCULATION FORMULA

Cv VALUES

SIZE in / DN	Cv VALUES	SIZE in / DN	Cv VALUES
1/2 / 15	15	2/50	60
3/4 / 20	18	2-1/2 / 65	290
1 / 25	20	3/80	300
1-1/4 / 32	55	4 / 100	350
1-1/2 / 40	58		

The above Cv Values were determined using a 1 / 16" perforated plastic basket in 1/2" through 4" strainers.

To calculate pressure drop through vessels using other than 1 / 16" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

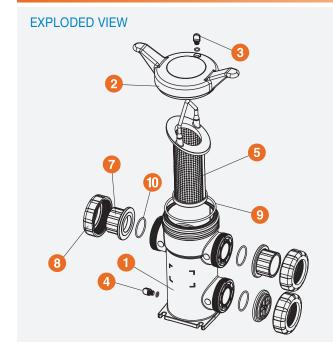
HAYWARD

SB Series Simplex Basket Strainers

1/2" TO 4" EASTAR®

KEY FEATURES

- Available in Clear Eastar® Material
- True Union Design
- Ergonomic Hand-Removable Cover
- In-Line or Loop Connections
- External Cover Threads
- Integral Flat Mounting Bases
- PVC Basket Standard


OPTIONS

- Drain Kit with Lockout Ball Valve
- Baskets Available with Perforated or Mesh Liners
- Stainless Steel, Monel®, Hastelloy® and Titanium Strainer Baskets
- Pressure Differential Gauge and Switch

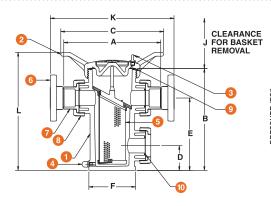
MATERIALS

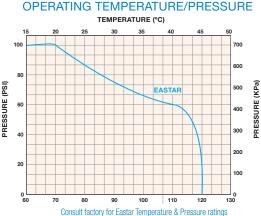
- Eastar® Polyester
- PVC Cell Class 12454 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE*	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING
1/2" - 4" (DN15 - DN100)	Eastar®	Socket, Threaded or Flanged	FPM or EPDM	100 PSI @ 70°F 7 Bar @ 21°C Non-Shock

- End connections and assembly nuts are PVC.
- ** PVC socket ends available to ISO 727-1 and threaded ends to BS21. Flanged ends available in DIN / EN PN10. *** See Page 21 for Available Perf or Mesh


SB Series Simplex Basket Strainers


1/2" TO 4" CLEAR EASTAR®

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Body
- 2. Cover
- 3. Vent Plug and O-Ring
- 4. Drain Plug and O-Ring
- 5. Basket
- 6. Flange (Optional)
- 7. End Connector
- 8. Nut
- 9. Cover O-Ring
- 10. End Connector O-Ring

DIMENSIONS								WEIGHT				
		l	I	l	1		I	l	I	lbs	/ kg	
SIZE in / DN	A in / mm	B in / mm	in / mm	in / mm	E in / mm	F in / mm	in / mm	K in / mm	in / mm	SOC / THD	FLANGED	VOLUME gal / LT
1/2 / 15	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	10.77 / 274	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
3/4 / 20	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.02 / 280	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1 / 25	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.64 / 296	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1-1/4 / 32	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.63 / 397	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
1-1/2 / 40	12.69 / 322	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.89 / 403	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2/50	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	16.29 / 413	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2-1/2 / 65	16.52 / 420	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	21.02 / 534	22.30 / 566	28.00 / 12.70	33.00 / 14.97	2.80 / 10.60
3 / 80	16.40 / 417	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	20.36 / 517	22.30 / 566	28.00 / 12.70	33.50 / 15.20	2.80 / 10.60
4 / 100	17.27 / 439	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	22.13 / 562	22.30 / 566	28.00 / 12.70	37.00 / 16.78	2.80 / 10.60

Dimensions are subject to change without notice — consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS

For 1/2" to 4" Strainers									
Pla	stic	Stainless Steel							
1/32"	1.05	1/32"	.82	20 Mesh	.79				
1/16"	1.00	1/16"	.74	40 Mesh	1.01				
1/8"	.58	1/8"	.58	60 Mesh	1.20				
3/16"	.46	5/32"	.37	80 Mesh	1.16				
		3/16"	.46	100 Mesh	1.20				
		1/4"	.58	200 Mesh	1.09				
		3/8"	.45						

PRESSURE LOSS CALCULATION FORMULA

 $\begin{array}{ll} \text{The pressure drop across} & \Delta P = \left[\frac{Q}{Cv}\right]^2 \\ \text{the strainer, for water or fluids} \\ \text{with a similar viscosity, can} \\ \text{be calculated using the} \\ \text{formula at the right:} & Cv = Flow Coefficient \\ \end{array}$

Cv VALUES

SIZE in / DN	Cv VALUES	SIZE in / DN	Cv VALUES
1/2 / 15	15	2/50	60
3/4 / 20	18	2-1/2 / 65	290
1 / 25	20	3/80	300
1-1/4 / 32	55	4 / 100	350
1-1/2 / 40	58		

The above Cv Values were determined using a 1 / 16" perforated plastic basket in 1/2" through 4" strainers.

To calculate pressure drop through vessels using other than 1/16" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

⁻ Eastar is a registered trademark of Eastman

Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

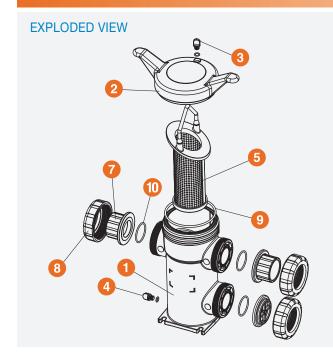
HAYWARD

SB Series Simplex Basket Strainers

1/2" TO 4" GFPP BLACK AND GFPP PLATINUM

KEY FEATURES

- Available in Black or Platinum GFPP Materials
- True Union Design
- Ergonomic Hand-Removable Cover
- In-Line or Loop Connections
- External Cover Threads
- Integral Flat Mounting Bases
- PP Baskets Standard


OPTIONS

- Drain Kit with Lockout Ball Valve
- Baskets Available with Perforated or Mesh Liners
- Stainless Steel, Monel®, Hastelloy® and Titanium Strainer Baskets
- · Pressure Differential Gauge and Switch

MATERIALS

- GFPP Cell Class 85580 per ASTM D4101
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE*	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING	
1/2" - 4" (DN15 - DN100)	Black - GFPP Threaded or Flanged		FPM or	150 PSI @ 70°F	
	Platinum GFPP	Socket Fusion, Threaded or Flanged	EPDM	10 Bar @ 21°C Non-Shock	

- * PP socket fusion ends per ASTM F2389 and threaded ends per BS21. Socket Fusion ends available only with Platinum units. Flanged ends available in DIN / EN PN10.
 ** See Page 21 for Available Perf or Mesh

PARTS LIST

1. Body - GFPP

2. Cover - GFPP

8. Nut - GFPP

TECHNICAL INFORMATION, CONTINUED

OPERATING TEMPERATURE/PRESSURE TEMPERATURE (°C) CLEARANCE FOR BASKET₆₀ REMOVAL 3. Vent Plug and O-Ring 4. Drain Plug and O-Ring 5. Basket - PP or Alloy PRESSURE 600 80 6. Flange (Optional) - GFPP 60 400 7. End Connector - GFPP or PP 20 9. Cover O-Ring - EPDM or FPM 10. End Connector O-Ring - EPDM or FPM

DIMENSI	DIMENSIONS									WEIGHT lbs / kg		
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm		J in / mm	K in / mm	L in / mm	SOC / THD	FLANGED	VOLUME gal / LT
1/2 / 15	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	10.77 / 274	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
3/4 / 20	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.02 / 280	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1/25	8.64 / 219	9.63 / 245	11.00 / 279	2.25 / 57	6.75 / 171	4.31 / 109	8.00 / 203	11.64 / 296	11.70 / 297	8.00 / 3.63	9.00 / 4.08	.20 / .76
1-1/4 / 32	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.63 / 397	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
1-1/2 / 40	12.69 / 322	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	15.89 / 403	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2/50	12.75 / 324	13.38 / 340	13.50 / 343	3.25 / 83	9.50 / 241	6.13 / 156	12.86 / 327	16.29 / 413	15.50 / 394	14.00 / 6.35	16.50 / 7.48	.70 / 2.65
2-1/2 / 65	16.52 / 420	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	21.02 / 534	22.30 / 566	28.00 / 12.70	33.00 / 14.97	2.80 / 10.60
3/80	16.40 / 417	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	20.36 / 517	22.30 / 566	28.00 / 12.70	33.50 / 15.20	2.80 / 10.60
4 / 100	17.27 / 439	19.83 / 504	16.00 / 406	4.83 / 123	14.83 / 377	7.25 / 184	17.25 / 438	22.13 / 562	22.30 / 566	28.00 / 12.70	37.00 / 16.78	2.80 / 10.60

Dimensions are subject to change without notice – consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS

For 1/2" to 4" Strainers									
Pla	stic	Stainless Steel							
1/32"	1.05	1/32"	.82	20 Mesh	.79				
1/16"	1.00	1/16"	.74	40 Mesh	1.01				
1/8"	.58	1/8"	.58	60 Mesh	1.20				
3/16"	.46	5/32"	.37	80 Mesh	1.16				
		3/16"	.46	100 Mesh	1.20				
		1/4"	.58	200 Mesh	1.09				
		3/8"	.45						

PRESSURE LOSS CALCULATION FORMULA

 $\Delta P = \left[\frac{Q}{Cv}\right]^2$ The pressure drop across the strainer, for water or fluids $\Delta P = Pressure Drop$ with a similar viscosity, can Q = Flow in GPM be calculated using the formula at the right: Cv = Flow Coefficient

Cv VALUES

SIZE in / DN	CV VALUES	SIZE in / DN	Cv VALUES
1/2 / 15	15	2/50	60
3/4 / 20	18	2-1/2 / 65	290
1 / 25	20	3/80	300
1-1/4 / 32	55	4 / 100	350
1-1/2 / 40	58		

TEMPERATURE (°F) Consult factory for Eastar Temperature & Pressure ratings

The above Cv Values were determined using a 1 / 16" perforated plastic basket in 1/2" through 4" strainers.

To calculate pressure drop through vessels using other than 1 / 16" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

SB Series Simplex Basket Strainers

6" TO 8" PVC AND CPVC

KEY FEATURES

- Available in PVC and CPVC Materials
- Ergonomic Hand-Removable Cover
- In-Line or Loop Connections
- External Cover Threads
- Integral Flat Mounting Bases
- PVC or CPVC Baskets Standard
- NSF / ANSI 61 and NSF / ANSI 372 Listed

OPTIONS

- Stainless Steel, Monel® Hastelloy® and **Titanium Strainer Baskets**
- · Pressure Differential Gauge and Switch
- Baskets Available with Perforated or Mesh Liners

MATERIALS

- PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING
6" - 8" (DN150 - DN200)	PVC or CPVC	Flanged*	FPM or EPDM	150 PSI @ 70°F 10 Bar @ 21°C Non-Shock

^{*} Flanged Ends available in ANSI/ASME 150 or DIN/ EN PN10 ** See Page 21 for Available Perf or Mesh

TECHNICAL INFORMATION, CONTINUED

PARTS LIST OPERATING TEMPERATURE/PRESSURE 1. Body TEMPERATURE (°C) 2. Cover CLEARANCE FOR BASKET 160 35 75 85 115 1100 3. Vent Plug and O-Ring REMOVAL 1000 4. Drain Plug and O-Ring 5. Basket 800 PRESSURE (PSI) 6. Flange (Optional) 100 7. Cover O-Ring 80 R 200 20 100 Е TEMPERATURE (°F)

DIMENSIONS									WEIGHT lbs / kg			
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	J in / mm	K in / mm	L in / mm	SOC / THD	FLANGED	VOLUME gal / LT
6 / 150	N/A	36.07 / 871	18.00 / 457	12.46 / 316	28.99 / 736	13.50 / 298	21.80 / 554	22.42 / 569	39.90 / 1013	N/A	60.00 / 27.21	6.80 / 25.74
8 / 200	N/A	36.07 / 871	18.00 / 457	12.46 / 316	28.99 / 736	13.50 / 298	28.75 / 730	25.44 / 640	39.90 / 1013	N/A	80.00 / 36.28	9.00 / 34.07

Dimensions are subject to change without notice - consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS

For 6" to 8" Strainers

Plastic		Stainless Steel						
1/8"	2.00	1/32"	2.25	20 Mesh	2.16			
3/16"	1.50	1/16"	2.03	40 Mesh	2.79			
		1/8"	1.58	60 Mesh	3.28			
		5/32"	1.00	80 Mesh	3.18			
		3/16"	1.26	100 Mesh	3.30			
		1/4"	1.58	200 Mesh	2.98			

PRESSURE LOSS CALCULATION FORMULA

The pressure drop across the strainer, for water or fluids with a similar viscosity, can be calculated using the formula at the right: $\Delta P = \left[\frac{Q}{Cv}\right]^2 \\ \Delta P = \text{Pressure Drop} \\ Q = \text{Flow in GPM} \\ Cv = \text{Flow Coefficient}$

Cv VALUES

SIZE in / DN	CV VALUES		
6 / 150	1,000		
8 / 200	750		

The above Cv Values were determined using a 5 / 32" perforated plastic basket in 6" and 8" strainers.

To calculate pressure drop through vessels using other than 5 / 32" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

DB Series Duplex Basket Strainers

1/2" TO 4" PVC, CPVC AND EASTAR®

KEY FEATURES

- Available in PVC, CPVC and Eastar® Materials
- Ergonomic Hand-Removable Cover
- Uninterrupted Flow
- No System Shutdown for Basket Cleaning
- In-Line or Loop Piping
- Integral Flat Mounting Bases
- External Cover Threads
- Hand Removable Vents on Covers
- Hand Removable Drains on Bodies
- Liquid Displacing Covers

OPTIONS

- Stainless Steel, Monel[®], Hastelloy[®] and Titanium Strainer Baskets
- Pressure Differential Gauge and Switch
- Pneumatic or Electric Valve Automation
- Baskets Available with Perforated or Mesh Liners

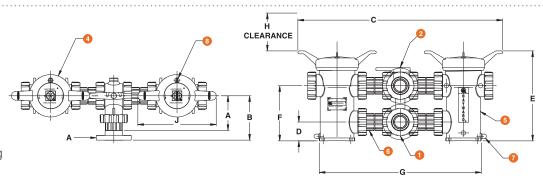
MATERIALS

- PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- Eastar®
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE**	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING
1/2" – 4"	PVC or CPVC	Socket, Threaded	FPM or	150 PSI @ 70°F 10 Bar @ 21°C Non-Shock
(DN15 – DN100)	Eastar*	or Flanged	EPDM	100 PSI @ 70°F 7 Bar @ 21°C Non-Shock

- * End connections and assembly nuts are PVC.
- ** PVC and CPVC socket ends available to ISO 727-1 and threaded ends to BS21.
- *** Flanged ends available in DIN / EN PN10.
- **** See Page 21 for Available Perf or Mesh


DB Series Duplex Basket Strainers

1/2" TO 4" PVC, CPVC AND EASTAR®

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Single Stem Lateral
- 2. Double Stem Lateral
- 3. Inlet Flange
- 4. Cover
- 5. Strainer Body
- 6. Spool
- 7. Drain Plug and O-Ring
- 8. Vent Plug and O-Ring

DIMENSIONS										<mark>GHT</mark> / kg	
SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	G in / mm	H in / mm	J in / mm	SOC / THD	FLANGED
1/2 / 15	4.14 / 105	5.21 / 132	27.20 / 691	2.25 / 57	11.70 / 297	6.75 / 171	20.50 / 521	5.00 / 127	11.00 / 279	20.00 / 9.07	21.00 / 9.53
3/4 / 20	4.14 / 105	5.33 / 135	27.20 / 691	2.25 / 57	11.70 / 297	6.75 / 171	20.50 / 521	5.00 / 127	11.00 / 279	20.00 / 9.07	21.00 / 9.53
1 / 25	4.14 / 105	5.64 / 143	27.20 / 691	2.25 / 57	11.70 / 297	6.75 / 171	20.50 / 521	5.00 / 127	11.00 / 279	20.00 / 9.07	21.00 / 9.53
1-1/4 / 32	6.00 / 152	7.44 / 189	35.30 / 897	3.25 / 83	15.50 / 394	9.50 / 241	28.00 / 711	10.80 / 274	13.50 / 343	39.50 / 17.92	42.00 / 19.05
1-1/2 / 40	6.00 / 152	7.60 / 193	35.30 / 897	3.25 / 83	15.50 / 394	9.50 / 241	28.00 / 711	10.80 / 274	13.50 / 343	39.50 / 17.92	42.00 / 19.05
2/50	6.00 / 152	7.77 / 197	35.30 / 897	3.25 / 83	15.50 / 394	9.50 / 241	28.00 / 711	10.80 / 274	13.50 / 343	39.50 / 17.92	42.00 / 19.05
2-1/2 / 65	7.60 / 193	9.85 / 250	44.40 / 1128	4.83 / 123	22.30 / 566	14.83 / 377	35.60 / 904	14.80 / 376	16.00 / 406	83.00 / 37.65	88.00 / 39.92
3/80	7.60 / 193	9.85 / 250	44.40 / 1128	4.83 / 123	22.30 / 566	14.83 / 377	35.60 / 904	14.80 / 376	16.00 / 406	83.00 / 37.65	88.50 / 40.14
4 / 100	9.33 / 237	11.76 / 299	47.50 / 1207	4.83 / 123	22.30 / 566	14.83 / 377	38.70 / 983	14.80 / 376	16.00 / 406	100.00 / 45.36	105.00 / 47.63

PRESSURE DROP CALCULATIONS

CORRECTION FACTORS

	For 1/2" to 4" Strainers								
Plas	stic		Stainless Steel						
1/32"	1.05	1/32"	.82	20 Mesh	.79				
1/16"	1.00	1/16"	.74	40 Mesh	1.01				
1/8"	.58	1/8"	.58	60 Mesh	1.20				
3/16"	.46	5/32"	.37	80 Mesh	1.16				
		3/16"	.46	100 Mesh	1.20				
		1/4"	.58	200 Mesh	1.09				
		3/8"	.45						

PRESSURE LOSS **CALCULATION FORMULA**

The pressure drop across the strainer, for water or fluids with a similar viscosity, can be calculated using the formula at the right: $\Delta P = Pressure Drop$ $\mathsf{Q} = \mathsf{Flow} \; \mathsf{in} \; \mathsf{GPM}$ Cv = Flow Coefficient

OPERATING TEMPERATURE/PRESSURE

Cv VALUES

0.777.120120								
SIZE in / DN	Cv VALUES	SIZE in / DN	Cv VALUES					
1/2 / 15	12.5	1-1/2 / 40	45					
3/4 / 20	13	2/50	48					
1 / 25	14	3 / 80	200					
1-1/4 / 32	40	4 / 100	280					

The Cv Values were determined using a 1/16" perforated plastic basket in 1/2" through 4" strainers.

To calculate pressure drop through vessels using other than 1/16" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

Hayward is a registered trademark of Hayward Industries, Inc.
© 2019 Hayward Industries, Inc.

Eastar is a registered trademark of Eastman.
 Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

DB Series Duplex Basket Strainers

6" TO 8" PVC AND CPVC

KEY FEATURES

- Available in PVC and CPVC Materials
- Ergonomic Hand-Removable Cover
- Uninterrupted Flow
- No System Shutdown for Basket Cleaning
- In-Line or Loop Piping
- Integral Flat Mounting Bases
- External Cover Threads
- Hand Removable Vents on Covers
- Hand Removable Drains on Bodies
- Liquid Displacing Covers

OPTIONS

- Stainless Steel, Monel[®], Hastelloy[®] and Titanium Strainer Baskets
- Pressure Differential Gauge and Switch
- Pneumatic or Electric Valve Automation
- Baskets Available with Perforated or Mesh Liners

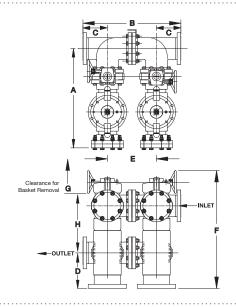
MATERIALS

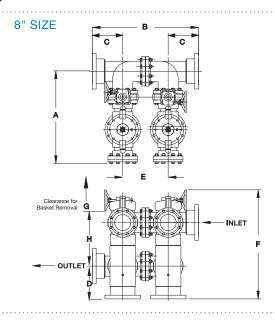
- PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

SIZE*	MATERIAL	END CONNECTION	SEALS	PRESSURE RATING
6" - 8" (DN150 - DN200)	PVC or CPVC	Flanged*	FPM or EPDM	150 PSI @ 70°F 10 Bar @ 21°C Non-Shock

^{*} Flanged Ends available in ANSI/ASME 150 or DIN/ EN PN10


^{**} See Page 21 for Available Perf or Mesh


DB Series Duplex Basket Strainers

6" AND 8" PVC AND CPVC

TECHNICAL INFORMATION, CONTINUED

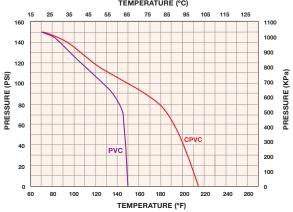
DIMENSIONS

SIZE in / DN	A in / mm	B in / mm	C in / mm	D in / mm	E in / mm	F in / mm	G in / mm	H in / mm	WEIGHT lbs / kg
6 / 150	34.91 / 887	34.42 / 874	8.59 / 218	12.45 / 316	17.24 / 438	41.40 / 1052	21.80 / 554	16.53 / 420	180.00 / 81.65
8 / 200	42.70 / 1085	53.15 / 1350	13.27 / 337	12.45 / 316	26.62 / 676	42.52 / 1080	28.75 / 730	16.53 / 420	250.00 / 113.40

Dimensions are subject to change without notice – consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS


	For 6" to 8" Strainers									
Pla	stic		Stainless Steel							
1/8"	2.00	1/32"	2.25	20 Mesh	2.16					
3/16"	1.50	1/16"	2.03	40 Mesh	2.79					
		1/8"	1.58	60 Mesh	3.28					
		5/32"	1.00	80 Mesh	3.18					
		3/16"	1.26	100 Mesh	3.30					
		1/4"	1.58	200 Mesh	2.98					
		3/8"	1.24							

PRESSURE LOSS CALCULATION FORMULA

 $\Delta P = \left[\frac{Q}{Cv}\right]^2$ $\Delta P = \text{Pressure Drop}$ Q = Flow in GPM Cv = Flow Coefficient

The pressure drop across the strainer, for water or fluids with a similar viscosity, can be calculated using the formula at the right:

OPERATING TEMPERATURE/PRESSURE

Cv VALUES

SIZE in / DN	Cv VALUES GPM
6 / 150	1,000
8 / 200	750

 The Cv Values were determined using a 5/32" perforated plastic basket in 6" and 8" strainers.

To calculate pressure drop through vessels using other than 5/32" perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

Hastelloy is a registered trademark of Haynes International Inc.
 Monel is a registered trademark of Special Metals Corporation.

How to Select a Basket Strainer

SELECTION CRITERIA

The first consideration when selecting a Hayward basket strainer is the amount of free open area. This is the ratio of the open area through the strainer basket to the cross sectional area of the pipe. A well-designed basket strainer should have an open area ratio of at least 4 to 1. Anything less may cause excessive pressure drop. The area is calculated with a clean basket — and as the basket begins to clog, the ratio will drop. Unless there is a wide safety margin, the area through the basket may quickly become smaller than the pipe area. This will reduce flow through the strainer and necessitate very frequent cleaning. A small open area ratio also means the holding capacity of the basket is small (an important consideration if there is a lot of solid material to be removed.)

Second, is ease of basket removal. Since a basket strainer is used where cleaning may occur often, it stands to reason that the basket should be able to be removed and replaced as simply as possible. Hayward Simplex and Duplex strainers feature hand removable, threaded covers which can be quickly loosened or tightened by hand without the use of tools.

Another item to look for in selecting a strainer is compactness of design. Is the strainer unnecessarily bulky or tall? In many industrial areas, space is at a premium and the less room a strainer takes the better.

Lastly, a wide variety of basket perforation sizes should be available. This is necessary to cope with the great range of particle sizes which the strainer may be called upon to remove.

SELECTION AND SIZING

Selecting the proper size basket strainer for a particular application is extremely important for optimum performance of the strainer. Factors such as viscosity, specific gravity and mesh lining size all influence pressure drop of flow through the strainer. As a general rule of thumb, a pressure drop of greater than 2 PSI through a clean strainer usually indicates the strainer selected is too small for the intended application.

In some cases, the strainer size may not always be the same size as the pipe diameter. For example, the pressure drop of highly viscous liquids passing through a mesh basket can cut flow considerably making it necessary to use a strainer several times larger than pipeline to ensure adequate flow. Likewise, if an unusually large amount of material needs to be taken out of the process flows, a larger strainer or multiple strainer should be specified. By using two strainers in series, the first with large openings designed to catch larger particles and the second with a fine mesh lining to trap smaller material, the load is spread over two strainers and time between maintenance for cleaning is also extended.

PROPER BASKET SELECTION

The question of which perforation or mesh lining size to use comes up regularly. Here again, the basic rule is to use the coarsest size which will strain out the product to be removed. Using a finer mesh than needed will only result in premature clogging. When in doubt about which of two basket screens to use, it is best to choose the larger. As a rule of thumb, size the baskets for one half the particle size to be removed.

BASKET SIZES OFFERED FOR HAYWARD SIMPLEX AND DUPLEX PLASTIC BASKET STRAINERS

Comparative Particle Size

PERF	INCHES	MILLIMETERS	MICRONS	MESH	INCHES	MILLIMETERS	MICRONS
1/32	0.033	0.838	838	200	0.0027	0.0686	68
1/16	0.070	1.778	1776	100	0.0065	0.1651	165
3/32	0.094	2.387	2387	80	0.007	0.1778	177
1/8	0.125	3.175	3175	60	0.009	0.2286	228
5/32	0.150	3.810	3810	40	0.015	0.8636	380
3/16	0.1875	4.762	4762	20	0.034	0.8636	862
1/4	0.250	6.350	6350				
3/8	0.375	9.525	9525				

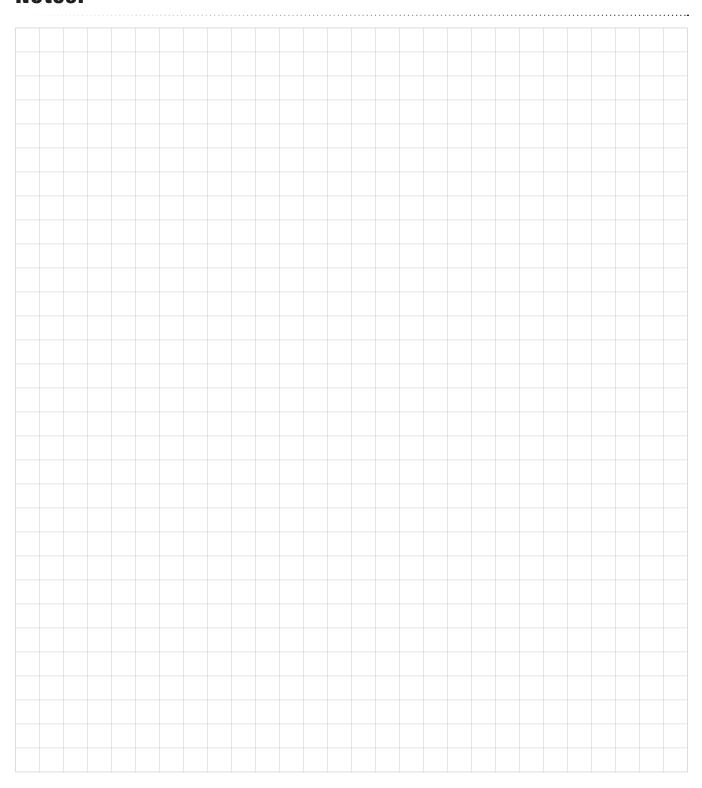
^{*}Perforations available in PVC, CPVC, PP, Stainless Steel, Monel, Hastelloy and Titanium

^{**}Mesh Baskets only in Stainless Steel, Monel, Hastelloy and Titanium

^{***}Not all perf or mesh sizes may be available or suitable for all strainer, consult with factory

Flow of Water Through Schedule 80 Plastic Pipe

DISCHARGE			VELOCITY IN SCHEDULE 80 PLASTIC PIPE FOR WATER @ 60°F/16°C VELOCITY							
GALLONS /	CUBIC METER/		FEET/SECOND	FEET/SECOND	FEET/SECOND	FEET/SECOND	I	FEET/SECOND	FEET/SECOND	FEET/SECOND
MINUTE	HOUR	SECOND	T LE I/OLOGNID	1/4"/DN8	3/8"/DN10	1/2"/DN15	3/4"/DN20	1"/DN25	1-1/4"/DN32	1-1/2"/DN40
0.2	0.05	0.000446	_	0.824	— — — — — — — — — — — — — — — — — — —	— I/Z /DIVIS	— UNE TO NE O	— T /DN23	—	—
0.3	0.07	0.000668	_	1.237	0.651	0.392	_	_	_	_
0.4	0.09	0.000891	_	1.646	0.867	0.529	_	_	_	_
0.5	0.11	0.00111	_	2.061	1.083	0.653	0.359	_	_	_
0.6	0.14	0.00134	_	2.476	1.303	0.782	0.431	_	_	_
0.8	0.18	0.00178 0.00223	_	3.295 4.122	1.728 2.167	1.043 1.311	0.574 0.718	0.435	_	_
2	0.25	0.00223		8.245	4.335	2.609	1.432	0.433	0.525	
3	0.68	0.00668	_	12.381	6.502	3.919	2.161	1.306	0.788	0.538
4	0.91	0.00891	2"	16.502	8.671	5.218	2.876	1.747	1.051	0.717
5	1.14	0.01114	_	_	10.837	6.528	3.592	2.181	1.313	0.896
6	1.36	0.01337	0.65	2-1/2"	13.005	7.827	4.308	2.614	1.579	1.076
8	1.82	0.01782	0.86	_		10.448	5.741	3.482	2.105	1.434
10	2.27	0.02228	1.08	0.752	3"	13.057	4.351	2.632	2.632	1.798
15	3.41	0.03342	1.61	1.134	_	_	10.778	6.531	3.941	2.697
20	4.54	0.04456	2.15	1.505	0.986	_		8.712	5.252	3.596
25	5.68	0.0557	2.69	1.886	1.238	_	4" —	10.881	6.574	4.484
30 35	6.81 7.95	0.06684 0.07798	3.23 3.78	2.256 2.638	1.476 1.726	_	0.973	13.062 15.232	7.884 9.193	5.383 6.282
40	9.09	0.07730	4.32	3.009	1.976		1.114	17.413	10.515	7.171
45	10.22	0.1003	4.84	3.391	2.215	_	1.247	— —	11.838	8.069
50	11.36	0.1114	5.39	3.761	2.465	_	1.391	_	13.147	8.969
60	13.63	0.1337	6.47	4.513	2.953	_	1.665	_	15.779	10.778
70	15.90	0.156	7.55	5.266	3.453	_	1.942	_	_	12.577
80	18.17	0.1782	8.62	6.018	3.942	_	2.228	_	6"/DN150	14.36
90	20.44	0.2005	9.69	6.771	4.442	_	2.504	_	_	16.162
100	22.71	0.2228	10.77	7.523	4.931	_	2.781	_	1.225	17.96
125	28.39	0.2785	13.48	9.409	6.168	_	3.475	_	1.534	22.445
150	34.07	0.3342	16.18	11.284	7.395	_	4.171	_	1.893	
175	39.75	0.3899	18.87	13.171	8.633	_	4.865	_	2.141	8"/DN200
200 225	45.43 51.10	0.4456 0.5013	21.56	15.068 16.943	9.861 11.098	_	5.561 6.255	_	2.451 2.759	1.577
250	56.78	0.557		10.343	12.325	_	6.951	_	3.069	1.752
275	62.46	0.6127	_	_	13.563	_	7.645	_	3.367	1.927
300	68.14	0.6684	_	_	14.768	_	8.341	_	3.675	2.102
325	73.82	0.7241	_	_	16.041	_	9.035	_	3.985	2.277
350	79.49	0.7798	_	_	_	_	9.731	_	4.294	2.453
375	85.17	0.8355	_	_	_	_	10.425	_	4.592	2.628
400	90.85	0.8912	_	_	_	_	11.121	_	4.901	2.803
425	96.53	0.9469	10"/DN250	_	_	_	11.815	_	5.211	2.989
450	102.21	1.003	_	_	_	_	12.511	_	5.519	3.164
475	107.88	1.059	2.199	_	_	_	13.205	_	5.817	3.329
500	113.56	1.114	2.229	_	_	_	13.901	_	6.126	3.515
550 600	124.92 136.28	1.225 1.337	2.459 2.679	12"/DN300	_	_	15.279 16.681	_	6.744 7.352	3.865 4.215
650	147.63	1.225	2.899	12 /DN300 —	_			_	7.971	4.566
700	158.99	1.56	3.129	2.205	_	_	_	_	8.588	4.916
750	170.34	1.671	3.349	2.359	_	_	_	_	9.195	5.267
800	181.70	1.56	3.569	2.513	_	_	_	_	9.802	5.617
850	193.06	1.782	3.799	2.677	_	_	_	_	10.421	5.968
900	204.41	2.005	4.019	2.831	_	_	_	_	11.028	6.318
950	215.77	2.117	4.239	2.984	_		_	_	11.646	6.668
1000	227.13	2.228	4.469	3.149	_	_	_	_	12.253	7.019
1100	249.84	2.451	4.919	3.458		_	_	_	13.489	7.719
1200 1300	272.55	2.674 2.896	5.359	3.775	_	_	_	_	14.715	8.431
1400	295.26 317.98	3.119	5.809 6.259	4.093 4.401	_	_	_	_	15.929 17.165	9.121 9.833
1500	340.69	3.342	6.698	4.401	_			_	18.391	10.534
1600	363.40	3.565	7.148	5.037		_		_	19.611	11.235
1800	408.83	4.01	8.038	5.662	_	_	_	_	22.067	12.636
2000	454.25	4.456	8.938	6.228	_	_	_	_	24.517	14.038
2500	567.81	5.57	11.168	7.868	_	_	_	_	_	17.552
3000	681.38	6.684	13.396	9.437	_	_	_	_	_	21.068
3500	794.94	7.798	15.637	11.006	_	_	_	_	_	24.572
4000	908.50	8.912	17.866	12.587	_	_	_	_	_	28.08
4500	1022.06	10.13	20.106	14.156	I —	l —		l —	-	31.613
5000	1135.63	11.14	The following wa	ave surge constan	ts may be used to	quickly calculate	pressure rise due	to water hammer	where: "C"= the	wave surge
6000	1362.75	13.37	constant from th	e table below mu	Itiplied by "V" the	line velocity in feet			is then added to the	
7000	1589.88	15.6			urge (Water Hamn					•
8000 9000	1817.00 2044.13	17.82 20.05	Pine	Size	1/4" 1/2"	3/4" 1"	1-1/2" 2"	3" 4"	6" 8"	10" 12"
10000	2271.25	22.28		stant	40 35	32 31	27 25	23 23	21 20	19 19
12000	2725.50	26.74			ocity is 8 feet per					
					, o .oo. poi		5 .00t por 0	,		


Application Information Form for Y-Strainers, Simplex and Duplex Basket Strainers

LIQUID/CHEMICALS TO BE STRAINED **FLOW CONDITIONS** Flow (GPM) ___ __ Maximum ___ ____OR LBS/HR Steam or Gas Flow _ STD CU FT/MIN (SCFM) ____ (Give minimum working pressure for gas applications) Operating Pressure (PSI) ____ _____ Normal __ Design _____ Minimum Operating Temperature (°F) ______ Normal _____ Design _____ Minimum _____ Dirty ____ Maximum Allowable Pressure Drop: Clean _____ PSI PSI Can flow be interrupted to clean strainer basket? \square Yes \square No **CONTAMINANT** Solids to be Removed Are they? ☐ Soft ☐ Fibrous ☐ Hard ☐ Sticky PPM Solids Concentration % WT % Volume Particle Size Microns, or Mesh or Perforation STRAINER CONSTRUCTION Body & Cover: ☐ PVC ☐ GFPP Black ☐ GFPP Platinum \square CPVC ☐ Fastar® Pipe Size (inches) _ End Connections: ☐ Threaded ☐ Socket Weld ☐ Socket Fusion ☐ Flanged ☐ ANSI ☐ EN/DIN PN10 O-Ring Seal Material: \Box FPM ☐ EPDM SPECIAL FEATURES REQUIRED Differential Pressure: ☐ Gauge Switch □ Drain Valve ☐ Vent Valve SUBMITTALS (CHECK IF REQUIRED) ☐ Hydro Test Reports ☐ Certificate of Origin ☐ Certificate of Material Conformance

NOTICE: The data contained in this publication are correct to the best of our knowledge. However, we do not assume any liability for the accuracy or completeness of such data. The final determination of suitability of product and information, use intended, manners of that use, or infringement of patents is the responsibility of the user.

Selection of products and features is limited to what is currently offered by Hayward. Material selection subject to change to comply to chemical resistance or product performance

Notes:

Other Filtration Solutions from Hayward Flow Control...

GFPP FLV SERIES BAG & CARTRIDGE FILTERS

- Platinum Glass Filled Polypropylene Material
- One-Piece Injection Molded Construction with True Union Connections
- Hand Removable, Ergonomic Cover with Liquid Displacing Dome
- Vent Valve Included On Cover
- In-Line or Loop Configuration
- Integral Mounting Base
- Available for Bags or Cartridges
- Duplex and Triplex Assemblies

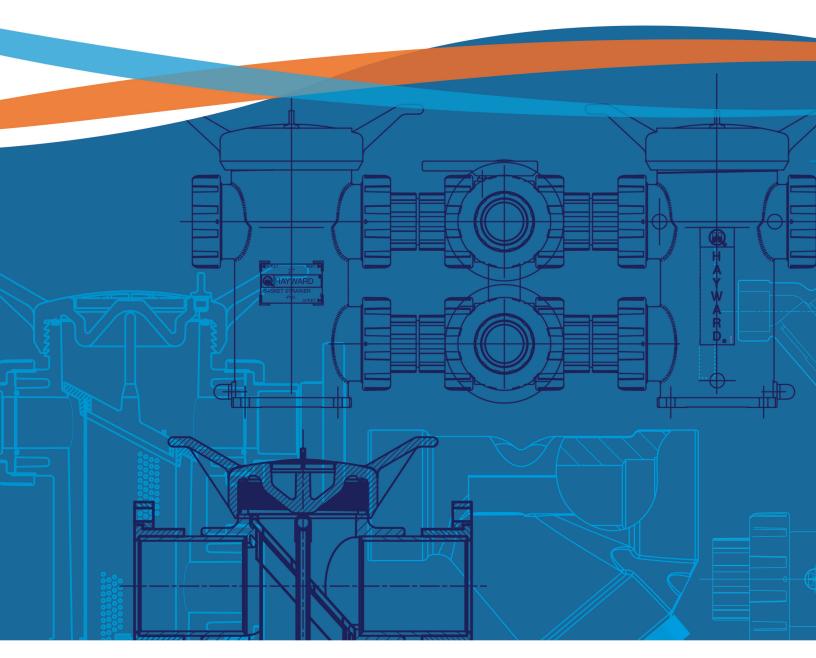
- Available in PVC or CPVC Materials
- True Union End Connections Socket, Threaded or Flanged
- Hand Removable, Ergonomic Cover with Liquid Displacing Dome
- Vent Valve Included on Cover
- Rated up to 100 GPM Flow Rates
- Solid 1-Piece Basket
- In-Line or Loop Flow Configurations
- Drain Port at Bottom
- Integral Mounting Base

INDUSTRIAL FILTER BAGS

- PP Needle Felt, Polyester Needle Felt, PP Mesh or Nylon Mesh
- 1 to 800 Micron Ratings
- Thermoplastic Ring Seal
- Thermoplastic Flange Seal
- Heavy Duty Welded Construction
- Silicone-Free

HIGH CAPACITY PLEATED CARTRIDGES

- Multiple Micron Ratings for High Efficiency Filtration
- Available in 7" and 2-1/2" Diameters, Single and Double Length
- High Surface Area Design Provides Excellent Flow Rates and Comprehensive Service Life
- Thermally Bonded DOE End-Caps, Core and Filter Media
- Low Pressure Drop
- Multiple Layered Media Construction Guarantees Dependable Performance


LS SERIES AQUATIC SAND FILTER

- Ideal for Sensitive Aquatic Environments or Salt Water Systems
- All Wetted Hardware Manufactured from 316 Stainless Steel
- Corrosion Resistant Thermoplastic Housing and Base
- Durable Flanged Inspection Cover
- Integral Top Diffuser
- Efficient, Multilateral Underdrain Assembly
- Intergral Molded Drain Plug

HCF SERIES COMMERCIAL SAND FILTER

- Ideal for Fresh Water Systems
- UV-Protectant Gel Coat Protects Filter From Elements
- Transparent Manway Design Simplifies Operation and Improves Durability
- Commercial-grade PVC and ABS Injection Molded Internals With 360° Slotted Laterals
- Industrial Valve and Pressure Gauge
- Available in 30", 34" and 36" sizes
- Flow Rates up to 143GPM
- NSF/ANSI 50 Listed

Eastar is a trademark of Eastman.
 Hastelloy is a registered trademark of Haynes International, Inc.
 Monel is a registered trademark of Advanced Elastomer Systems.

SPG0419